Expanding the VPE-qGM Environment Towards a Parallel Quantum Simulation of Quantum Processes Using GPUs

نویسندگان

  • Adriano Maron
  • Renata Reiser
  • Mauricio Pilla
  • Adenauer Yamin
چکیده

Quantum computing proposes quantum algorithms exponentially faster than their classical analogues when executed by a quantum computer. As quantum computers are currently unavailable for general use, one approach for analyzing the behavior and results of such algorithms is the simulation using classical computers. As this simulation is inefficient due to the exponential growth of the temporal and spatial complexities, solutions for these two problems are essential in order to increase the simulation capabilities of any simulator. This work proposes the development of a methodology defined by two main steps: the first consists of the sequential implementation of the abstractions corresponding to the Quantum Processes and Quantum Partial Processes defined in the qGM model for reduction in memory consumption related to multidimensional quantum transformations; the second is the parallel implementation of such abstractions allowing its execution on GPUs. The results obtained by this work embrace the sequential simulation of controlled transformations up to 24 qubits. In the parallel simulation approach, Hadamard gates up to 20 qubits were simulated with a speedup of ≈ 50× over an 8-core parallel simulation, which is a significant performance improvement in the VPE-qGM environment when compared with its previous limitations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Xor Classes from Quantum Computing

By making use of quantum parallelism, quantum processes provide parallel modelling for fuzzy connectives and the corresponding computations of quantum states can be simultaneously performed, based on the superposition of membership degrees of an element with respect to the different fuzzy sets. Such description and modelling is mainly focussed on representable fuzzy Xor connectives and their du...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

A fast wallace-based parallel multiplier in quantum-dot cellular automata

Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...

متن کامل

Simulation of Direct Pumping of Quantum Dots in a Quantum Dot Laser

In this paper, the nonlinear rate equations governing a quantum dot laser isused to simulate the transient as well as the steady-state behaviors of the laser.Computation results show that the rate equations are capable of simulating true behaviorof a quantum dot laser. Then, the pump rates of the rate equations (which show indirectelectrical pumping of the quantum dots through a wetting layer) ...

متن کامل

Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths

The quantum transport computations have been carried on four different width of zigzag graphene using a nonequilibrium Green’s function method combined with density functional theory. The computed properties are included transmittance spectrum, electrical current and quantum conductance at the 0.3V as bias voltage.  The considered systems were composed from one-layer graphene sheets differing w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014